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In the last decades it was observed that Clifford algebras and geometric product provide
a model for different physical phenomena. We propose an explanation of this obser-
vation based on the theory of bounded symmetric domains and the algebraic structure
associated with them. The invariance of physical laws is a result of symmetry of the
physical world that is often expressed by the symmetry of the state space for the system
implying that this state space is a symmetric domain. For example, the ball of all possible
velocities is a bounded symmetric domain. The symmetry on this ball follow from the
symmetry of the space-time transformations between two inertial systems, which fixes
the so-called “symmetric velocity” between them. The Lorenz transformations acts on
the ballS of symmetric velocities by conformal transformations. The ballS is a spin
ball (type IV in Cartan’s classification). The Lie algebra of this ball is defined a triple
product that is closely related to geometric product. The relativistic dynamic equations
in mechanics and for the Lorenz force is described by this Lie algebra and the triple
product.

KEY WORDS: bounded symmetric domain; special relativity; geometric product;
spin factor.

1. INTRODUCTION

In the last decades geometric product became an efficient tool for description
of different areas in physics (see Baylis, 1996; Lasenbyet al., 2000). But why does
the Clifford algebra and geometric product turned out to be so efficient in describing
physical phenomena? We propose here an explanation of this observation based on
the theory of bounded symmetric domains and the algebraic structure associated
with them.

This explanation is based on our believe that unbounded and bounded sym-
metric domains and JB∗-triple product associated with these domains may provide
a model for different areas in physics. A bounded domainD in a Banach space
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is called abounded symmetric domainif for every z∈ D there exists a smooth
automorphismsz ∈ Aut(D) of period two onD, havingz as the only fixed point.
The smoothness of the automorphism may mean complex analytic, conformal
(preserving angles) or projective (preserving linear segments) transformations. It
is known that a domainD is a bounded symmetric domain if it has a symmetry
about one point and is homogeneous in sense that for any two pointsz, w ∈ D
there is an automorphismϕ ∈ Aut(D) such thatϕ(z)=w.

There is a triple product uniquely associated with any bounded symmetric
domainD in a Banach spaceA overC, obtained as follows (see Loos, 1977 for
details): By fixing any point inD (we may assume for simplicity that this is the zero
point of A) we may decomposeAut(D) into rotations and translations. This implies
that the Lie algebraaut(D) will be a direct sum of linear terms, as generators of
rotations, and generators of translations. It was shown (see Kaup, 1983; Loos,
1977) that the generators of translations are of the form

ξa(z) = a− qa(z), z ∈ A (1)

whereqa(z) is quadratic inz and is conjugate linear ina.
The quadratic formqa(z) could be rewritten as a real trilinear formqa(z)=

{z, a, z} and by linearization of the quadratic dependence inz (polarization) we
define a triple product onA with the following properties:

(i) {a, b, c} is linear ina, c and conjugate linear inb,
(ii) {a, b, c}= c, b, a.

The operatorD(a, b) defined by

D(a, b)c = {a, b, c}, c ∈ A (2)

satisfies:

(iii) the operatorD(a, a) is a hermitian with positive spectrum,
(iv) for anya, x, y, z∈ A

D(a, a){x, y, z} = {D(a, a)x, y, z} − {x, D(a, a)y, z}
+ {x, y, D(a, a)z} (3)

and
(v) ‖a‖3=‖{a, a, a}‖.

A Banach space A with a triple product satisfying the above properties is called
a JB∗-triple. In Kaup (1983) it is shown that the category of bounded symmetric
domains with respect to analytic maps is equivalent to the category of JB∗-triples.

Any bounded symmetric domain could be decomposed into indecompos-
able domains, called Cartan factors. There are six types of Cartan factors and the
JB∗-triples associated with them (Dang and Friedman, 1987; Loos, 1977). The
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type 1 consists of bounded operators between two Hilbert spaces. The types 2 and
3 consist of antisymmetric and symmetric complex matrices, respectively, repre-
senting bounded operators on a Hilbert space. In all above types the triple product
is defined by

{a, b, c} = ab∗c+ cb∗a
2

, (4)

where b∗ is the adjoint operator tob. The types 5 and 6 are exceptional of
dimensions 16 and 27 respectively, and we will not be concerned with them
here.

The Cartan factor of type 4, called also thespin factor, will be mainly used
here. This factor is defined as the spaceRn or Cn with the triple product

{a, b, c} = 〈a | b〉c+ 〈c | b〉a− 〈a | c̄〉b̄. (5)

As it was shown in Friedman and Russo (1986) any JB∗-triple is isomorphic to the
sum of an exceptional part and a subspace of operators on a Hilbert space with the
triple product (4).

Why are the bounded symmetric domains and JB∗-triples a good model for
physics? Any law in physics must satisfy the symmetry or invariance principle.
This principle states that the law should not change if we change the point from
which we observe the phenomena. Such a principle imposes homogeneity of the
state space of the system, that could be expressed as a symmetry of the domain
representing the possible states of the system. This suggests that the state space
is a symmetric domain. In order to be able to obtain numerical results we need
an algebraic structure. Currently there is only one algebraic structure that has an
origin only in geometry—the JB∗-triple product.

For quantum systems the state space must poses some geometry coming from
the measuring process. In Friedman and Russo (1992) and Friedman and Russo
(1993) it was shown that this geometry implies that the state space of the system is
a bounded symmetric domain. As it was noticed G¨unaydin (1980), all physically
meaningful quantities in Quantum Mechanics depend only on the Jordantriple
product rather than on the binary one. In Friedman and Russo (2001) it was shown
that the canonical anticommutation relations could be efficiently represented on
the spin factor and the Lorentz group is represented on this factor by spin 1 and
spin 1/2 representations.

In Friedman and Naimark (1992) and Friedman (1994) it was shown that
bounded symmetric domains occur in transmission line theory and in special rel-
ativity. In the next section we will show how the principle of relativity lead to
existence of a symmetry on the space-time continuum. From this symmetry alone
we shall derive the Lorentz transformations and show that the possible velocities
form a ball that is a bounded symmetric domain. The axis of the above symmetry
is defined by so-called symmetric velocity.
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In Section 4 we will show that the ballSof all possible symmetric velocities
is a bounded symmetric domain with respect to the conformal group and is Cartan
factor of type 4, called spin factor. The Lie algebraaut(S) is described in terms
of spin triple product. In Section 5 we will show that the dynamic equations in
mechanic and for the electromagnetic forces with respect to the symmetric velocity
are expressed through the spin triple product. In Section 6 we will show that there
is a natural representation of the geometric product as operators on the spin factor
and discuss the difference between this representation and its representation in the
Clifford algebra.

2. RELATIVISTIC LINEAR SPACE-TIME TRANSFORMATIONS
BASED ON SYMMETRY

In this section we will show how the Lorentz space-time transformations
could be obtained from a symmetry without assumption of constancy of speed of
light. This symmetry is a direct consequence of the Relativity Principle.

The basic tool of special relativity is the relation between the space-time
descriptions of events in two inertial frames that is expressed by the Lorentz
transformation. Einstein’s original axiomatic derivation (Einstein, 1905) of Lorentz
transformation formulation is based on two postulates: (i) the special relativity
principle and (ii) the hypothesis of the constancy of speed of light in all inertial
frames. A lot of work was done to show that the Lorentz transformations could
be deduced from weaker assumptions starting from 1910 till now, see Schwartz
(1984) and references therein.

The first Newton law states that in any inertial system an object moves with
constant velocity if there are no forces acting on it. Such a motion is called a free
motion and is described by straight lines in the space-time continuum. Thus, space-
time transformations between two inertial system will preserve straight lines. We
restrict ourself to inertial frames with the same space origin at timet = 0. By a
known theorem in mathematics this implies that the space-time transformation
between two inertial frames is a linear map. For another proof of linearity of the
space-time transformations based on the assumption of homogeneity was given in
Eisenberg (1967). By a simple argument this implies that the map between and is
also a linear map that could be described by a matrix.

Consider now two inertial frames K and K′ with coordinates (tr̄ ) and (t
′

r̄ ′ )
respectively. We assume that the frames have the same origin and the two clocks
at each origin synchronized at timet = 0. Moreover, we assume that the space
axes are reversed as in Fig. 1. The reversion of the space axis is needed to pre-
serve the symmetry, resulting from the principle of relativity, of the transforma-
tions between two inertial systems. Note that with this choice of the axes the
velocity of O′ in K is equal to the velocity ofO in K′ and thus the transfor-
mation problem is fully symmetric with respect to K and K′. We will denote this
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Fig. 1. Two symmetric reference frames.

transformationS̄v, since it is a symmetry and depends only on the velocity between
the systems.

To describe the relative position between these systems we consider an event
that occurs atO′, corresponding tōr ′ = 0 at timet and express its position̄r in K.
Since the system K′ moves with uniform velocity ¯v with respect to K, this means
that

r̄ = v̄ t. (6)

Note that for this description we used as input position of an event in system K′

with time in K to calculate its position in K.
The space-time transformation between these frames could be considered as

a “two-port linear black box” transformation with two inputs and two outputs. To
be consistent with the description of relative position between the systems, we
choose one of the inputs as a scalart—the time of the event in K and the other
input as a three-dimensional vectorr̄ ′ describing the position of the event in K′.
Then one of the outputs is a scalart ′—the time of the event in K′ and the other
output is a three-dimensional vectorr̄ describing the position of the event in K.
The four components of the transformationS̄v defined from(

t ′

r̄

)
= S̄v

(
t
r̄ ′

)
=
(

S11 S12

S21 S22

)(
t
r̄ ′

)
(7)

will be denoted bySi j for i , j ∈ {0, 1} as in Fig. 2.
We describe now the meaning of the four linear maps occurring in the

black box. To define the mapsS21 and S11 consider an event that occurs atO′,
corresponding tōr ′ = 0, at timet in K, then S21(t) express the position of this

Fig. 2. Black box model for space-time transformations.
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event in K andS11(t) express the time of this event in K′. Obviously,S21 describes,
the relative velocity of frame K′ with respect to K and it is given by

S21(t) = v̄ t (8)

and S11 describes the time measured by the clock positioned atO′ of an event
occurring atO′ at the timet in K and is given by

S11(t) = αt (9)

for some constantα.
To define the mapsS12 andS22 we will consider an event occurring at time

t = 0 in K in space position̄r ′ in K′. ThenS12(r̄ ′) will be the time of this event in K′

andS22(r̄ ′) will be the position of this event in K. Note thatS12(r̄ ′) is also the time
difference of two clocks both positioned at timet = 0 at a space point described by
r̄ ′ in K′, where the first one was synchronized to the clock at the common origin
of the two systems within the frame K′ and the second one was synchronized to
the clock at the origin within the frame K. ThusS12 describes the nonsimultaneity
in K′ of simultaneous events in K with respect to their space displacement in K′

following from the difference in synchronization of clocks in K and K′. SinceS12

is a linear map fromR3 to R, it is given by:

S12(r̄
′) = 〈ē | r̄ ′〉 = ēT · r̄ ′, (10)

for some vector̄e∈ R3 whereēT denotes the transpose ofē, the bracket〈|〉 denotes
the dot product inR3 and(· )denotes matrix multiplication. Note that since the space
is isotropic and the configuration of our systems has one unique divergent direction
v̄, thereforē is collinear to ¯v. Thus

ē= ev̄ (11)

for some constante.
Finally, the mapS22 describes the transformation of the space displacement

in K of simultaneous events in K with respect to their space displacement in K′

and it is given by:

S22(r̄
′) = Ar̄ ′ (12)

for some 3× 3 matrix A.
Our black box transformation can now be described by a 4× 4 matrixS̄v with

block matrix entries from (8) to (10) and (12) as(
t ′

r̄

)
= S̄v

(
t
r̄ ′

)
=
(
α ēT

v̄ A

)(
t
r̄ ′

)
. (13)
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If we now interchange the roles of systems K and K′, we will get a matrixS′v̄:(
t
r̄ ′

)
= S′v̄

(
t ′

r̄

)
=
(
α′ ē′T

v̄′ A′

)(
t ′

r̄ ′

)
. (14)

But the principle of relativity imply that switching the roles of K and K′ is non-
recognizable. Hence

α=α′, ēT= ē′T, v̄= v̄′, A= A′.

By combining (13) and (14) we getS2
v̄ = I , the identity, implying thatS̄v is a

symmetry operator, that is,(
α ēT

v̄ A

)(
α ēT

v̄ A

)
=
(

1 0̄T

0̄ I

)
, (15)

where I is the 3× 3 identity matrix. By a straightforward calculation from this
follow that the space-time transformation between the two inertial frames K and
K′ is (

t ′

r̄

)
= S̄v

(
t
r̄ ′

)
=
(
α ev̄T

v̄ − αPv̄ − (I − Pv̄)

)(
t
r̄ ′

)
(16)

with α defined by

α =
√

1− e|v̄|2. (17)

If we choose ¯v= (v, 0, 0) and writēr = (x, y, z) andr̄ ′ = (x′, y′, z′), the the above
matrix become

S̄v =


α ev 0 0
v −α 0 0
0 0 −1 0
0 0 0 −1

 . (18)

Solving (t ′
r̄ ′ ) as a function of (tr̄ ) we get

t ′ = α−1(t − evx) x′ = α−1(vt − x) y′ = −y z′ = −z (19)

which is the known Lorenz transformation (with space reversal) ife= 1/c2.

3. SYMMETRIC VELOCITY AND INTERVAL CONSERVATION

In this section we will show that from the principle of relativity alone it
follows that an interval is conserved, a ball of possible velocities is conserved and
this ball is a bounded symmetric domain with respect to the projective maps. The
symmetry of this ball, resulting from the above space-time transformations, fixes
the so-called symmetric velocity.
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Fig. 3. Eigenspaces of the symmetry.

As mentioned above, the space-time transformationS̄v between the frames K
and K′ is a symmetry transformation. Such a symmetry is a reflection with respect
to the set of the fixed points. We now want to determine the events fixed byS̄v,
meaning that in both systems the event will have the same coordinates. From (16)
it follows that such an event we have

r̄ ′

t
= v̄

1+ α =
r̄

t
:= w̄1. (20)

The meaning of this is that all the events fixed by the transformationS̄v are on
a straight world line through the origin of both frames at timet = 0 moving with
velocity w̄1 (see Fig. 3) in both frames. Such velocity we will call asymmetric
velocitybetween the frames K and K′. Similarly, for events in the plane generated
by v̄ and thet axis that are−1 eigenvectors ofS̄v we get:

r̄ ′

t
= v̄

α − 1
= r̄

t
:= w̄ − 1. (21)

The symmetryS̄v becomes an isometry if we introduce an appropriate inner
product. Under this inner product the 1 and−1 eigenvectors ofS̄v must be orthog-
onal and the operatorS̄v become a self-adjoint operator. The new inner product
may be obtained by leaving the inner product of the space components unchanged
and introducing some weightµ for the time component. The orthogonality of ¯w1

andw̄−1 imply µ2− 1
e = 0 and ife > 0, this implies

µ = 1√
e
. (22)

From the fact thatS is an isometry with respect to the inner product with
weightµ we have

(µt)2+ |r̄ ′|2 = (µt ′)2+ |r̄ |2 (23)
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that is equivalent to

(µt ′)2+ |r̄ ′|2 = (µt)2− |r̄ |2. (24)

This imply that our space-time transformation from K to K′ conserves the interval

ds2 = (µdt)2− |dr̄ |2 (25)

with µ defined by (22).
Moreover, since the zero interval world lines are transformed by these trans-

formations to zero interval lines this imply that the speedµ is conserved for any
relativistic space-time transformation between two inertial systems. Obviously,
also the coneds2 > 0, corresponding to a velocity ballD of radiusµ, is preserved
under this transformation. Thus, if we assume now conservation of the speed of
light c, we gete= 1/µ2 = 1/c2 and there is only one way of synchronizing the
clocks by satisfying the principle of relativity.

From our space-time transformations (16) we can describe how to translate
the velocity ū′ from frame K′ to corresponding velocitȳu in frame K. Direct
calculation shows that the velocity transformationsv̄ between systems K and K′ is
given by

ū = sv̄(ū′) = v̄ − (α2Pv̄ + α(I − Pv̄))
ū′

1− e〈v̄ | ū′〉 (26)

If we perform a space reversion of K′, this will lead toū′ → − ū′ leading to
the known Einstein’s velocity addition formula

ū = ϕv̄(ū′) = v̄ ⊕E ū′ = v̄ + (α2Pv̄ + α(I − Pv̄))
ū′

1+ e〈v̄ | ū′〉 . (27)

From the definition of the symmetric velocity (20) we get

w̄1⊕E w̄1 = v̄ (28)

implying that the symmetric velocity is the relativistic half of the velocity ¯v. This
shows that the ballD of possible velocities is a symmetric domain, since for any
velocity w̄1 we can define ¯v by (28). Thensv̄ defined by (26) is a symmetry fixing
only w̄1. Note that sincesv̄ was obtained by restricting of a linear mapS̄v to
a hyperplanet = 1 it follows thatsv̄ is a projective map (meaning line segment
preserving).

4. SYMMETRIC VELOCITY, CONFORMAL GROUP,
AND SPIN TRIPLE PRODUCT

In previous section we saw that the symmetric velocity plays an important
role in the relativistic transformations between two inertial systems. The symmetric
velocity was introduced in Friedman and Naimark (1992) in order to transform
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the the transformationsϕv̄ from (27) to conformal ones. We will assume from now
conservation of speed of light. Then the symmetric velocity ¯w and velocity ¯v are
connected by

w̄ = F(v̄) = v̄

1+
√

1− |v̄|2/c2
, v̄ = F−1(w̄) = 2w̄

1+ |w̄|2/c2
. (29)

As mentioned above, the symmetric velocity is the relativistic half of the regular
velocity. The set of all possible symmetric velocities in any inertial frame form a
3D ball S of radiusc. For simplicity of notation we will assume from nowc= 1.
As it was shown the mapψ = FϕF−1 is a conformal map of the ball. A similar
result was obtained by A. Ungar in 1996 (see Ungar, 2001) in the study of so-called
Möbius gyrovector space.

An explicit form of the conformal map of the ball was proposed by Ahlfors
in 1981 and is given by the formula (see Ungar, 2001) for the extended M¨obius
transformation

ψū(w̄) = ū⊕ w̄ = (1+ 2〈ū | w̄〉 + |w̄|2)ū+ (1− |ū|2)w̄

1+ 2〈ū | w̄〉 + |ū|2|w̄|2 , ū, w̄ ∈ S (30)

where⊕ will denote the sum of symmetric velocities.
If the evolution of the system is described by conformal maps of the symmetric

velocities, the dynamic equation will involve the generators of such maps. In order
to obtain the generators of the boosts we have to take a one-parameter familyψū(τ )

depending on some real parameterτ with ū(0)= 0. Then the generator is given by

ξā(w̄) = d

dτ
ψū(τ )(w̄)|τ = 0 = a− 2〈w̄ | ā〉w̄ + |w̄|2ā (31)

with ā = d
dτ ū(τ )|τ=0. This is a general formula for the generators of translations in

the Lie algebra of a bounded symmetric domain (see Loos, 1977). As mentioned
above, the generators of the translations are of the form

ξā(w̄) = ā− {w̄, ā, w̄}, (32)

with {w̄, ā, w̄}as the triple product associated with the bounded symmetric domain.
In our case the domain is a real domain of type 4 and dimension 3 in Cartan’s
classification, called also the Spin factor with the triple product defined by (5).
The norm is the usual Euclidean norm. The ball of radius one is homogeneous
under the group of conformal maps (30).

The Lie algebra of the conformal group consists of generators of boosts
described by (31) and (32) in terms of the triple product and of generators of
rotations. To describe the generators of rotations in the symmetric velocity ball we
chose first an orthonormal basis̄e1, ē2, ē3 in R3 and define

D̄ = (D(ē2, ē3), D(ē3, ē1), D(ē1, ē2)),
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where the linear operatorD(a, b) is defined by (2). Then the generator of rotation
for any symmetric velocity ¯w is expressed in the triple product by

ϑ(w̄) = (H · D̄)(w̄) = H × w̄ : H ∈ R3.

Thus, any elementζ of our Lie algebra is of the form

ζ = ζā,H (w̄) = ā+ (H · D̄) (w̄)− {w̄, ā · w̄} ā, H ∈ R3 (33)

and is expressed in terms of the triple product.
Note that also (30) could be obtained in terms of the triple product by expo-

nentiating (32) and using the explicit form for this exponent from Kaup (1983).

5. RELATIVISTIC DYNAMIC EQUATIONS USING
SYMMETRIC VELOCITY

We are going to describe now how to obtain the relativistic dynamic equation
for the symmetric velocities. From the definition of the symmetric velocity

γ = 1√
1− |v̄|2

= 1+ |w̄|2
1− |w̄|2 . (34)

and thus

mv= m0γ v = m0
2w̄

1− |w̄|2 (35)

with m0 the rest mass of the object.
The relativistic dynamic equation

F = d

dt
(mv̄)

for the symmetric velocities now becomes

F = d

dt
m0

2w̄

1− |w̄|2 = 2m0

(
1

1− |w̄|2
dw̄

dt
+ 2w̄

(1− |w̄|2)2

〈
dw̄

dt
|w̄
〉)
. (36)

By taking the inner product with ¯w we get

〈F | w̄〉 = 2m0

〈
dw̄

dt
|w̄
〉

1+ |w̄|2
(1− |w̄|2)2

. (37)

By substituting〈 dw̄
dt | w̄〉 from (37) into (36) we obtain

2m0

1− |w̄|2
dw̄

dt
= F − 2w̄

1+ |w̄|2 〈F | w̄〉. (38)
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Multiplying both sides of (38) by 1+ |w̄|2 and using thatdt = γdr we obtainthe
relativistic dynamic equation for the symmetric velocities

2m0
dw̄

dτ
= F − c−2{w̄, F, w̄} = ξF (w̄), (39)

whereτ denotes the proper time and the triple product is the spin triple product
defined by (5) andξ by (31) and (32). Thus, a forceF that does not have linear
dependence on ¯v will generate a conformal flow on the ballS representing the
symmetric velocities.

Let us derive now the relativistic dynamic equation for the electromagnetic
field for the symmetric velocities. LetE denotes the electric strength of the field,
H denote the magnetic strength. Then from the formula of the Lorentz force for
the electromagnetic field, the dynamic equation becomes

d

dt
(mv̄) = q(E + v̄ × H ).

Thus, using Eqs. (34) and (35) we get

q

(
E + 2w̄

1+ |w̄|2 × H

)
= d

dt
m0

2w̄

1− |w̄|2

= 2m0

(
1

1− |w̄|2
dw̄

dt
+ 2w̄

(1− |w̄|2)2

〈
dw̄

dt
|w̄
〉)
. (40)

By taking the inner product withw we get

q〈E | w̄〉 = 2m0

〈
dw̄

dt
|w̄
〉
1+ |w̄|2
1− |w̄|2 . (41)

By substituting〈 dw̄
dt | w̄〉 from (41) into (40) we obtain

2m0

1− |w̄|2
dw̄

dt
= q

(
E + 2w̄

1+ |w̄|2 × H − 2w̄

1+ |w̄|2 〈E | w̄〉
)
. (42)

Multiplying both sides of the last equation by 1+ |w̄|2 and using thatdt = γdτ
we obtain

2m0dw̄/dτ = q(E − c−2{w̄, E, w̄} + 2w̄ × H ) (43)

that could be considered as the relativistic dynamic equation for the electromag-
netic field. Thus, also the electromagnetic field generates a conformal flow on the
ball S representing the symmetric velocities.
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6. THE PHYSICAL MEANING OF THE GEOMETRIC PRODUCT

In the last decades it was found that the use of Clifford algebra and the
geometric product (see Hestenes and Sobczyk, 1984) associated with it simplify
the description of different physical phenomena in Classical and Modern physics.
In order to represent this product the physical quantities were imbedded into the
Clifford algebra. But what is the reason that this description is so successful? So far
not much is known why this algebraic structure is connected with the description
of real phenomena. Often, it is proposed that the success in use of this algebraic
structure is connected with the fact that the geometric product contains the dot
product and the outer (vector) product.

As it was shown in Section 2, the Lorenz transformation describing the space-
time transformation between two inertial systems could be obtained from the
principle of relativity alone. In Section 3 it is shown that such transformation is a
symmetry with respect a world line defined by the symmetric velocity, expressing
the relative motion of the systems. As shown in Section 4, the Lorenz group acts on
the ballSof all possible symmetric velocities by conformal maps. The Lie algebra
of the conformal group is fully described by the spin triple product. In Section
5 it was shown that the relativistic dynamic equations in mechanics and for the
electromagnetic force involve only spin triple product and define a conformal
flow on S.

For a real spin factor or equivalently for a Cartan domain of type 4 from (5)
follow that the spin triple product is

{a, b, c} = D(a, b)c = 〈a, b〉c+ 〈c, b〉a− 〈a, c〉b. (44)

Thus, the operatorD(u, v) is equal to

D(u, v) = 〈u | v〉I + u ∧ v, (45)

where I denotes the identity operator. This is similar to the geometric product
betweenu andv defined as

uv = 〈u | v〉 + u ∧ v, (46)

where the Sum of a scalar〈u | v〉 and bivectoru ∧ v makes sense in the Clifford
algebra. Therefore, the operatorD(u,v)represents the geometric product as natural
operator on the spin factor.

We want to mention the following difference between the two representations
of the geometric product: the first one as the product in the Clifford algebra and
the second one as operators of the spin triple product. In the first case, in order
to represent a vector space of dimensionn we need an algebra of dimension 2n,
while in the second case it is enough to consider the samen-dimensional vector
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space with the spin triple product on it. The spin factor and the spin triple product
result from basic principles in physics. The spin triple product is build directly
from the conformal group in real case and in complex case it is built totally on
geometry of Cartan domain of type 4 representing two-state systems in Quantum
Mechanics (see Friedman and Russo, 1992). The Lorentz group is represented
in both cases by a spin half representation. The spin factor has also the spin one
representation and the representation of the canonical anticommutation relations
as shown in Friedman and Russo (2001). As any bounded symmetric domain,
the spin factor has an explicitly defined invariant measure, Harmonic analysis,
spectral theorem, quantization, and representation as operators on a Hilbert space.
But, since the second representation is more compact, currently we are missing
several techniques that played important role in the Clifford algebra approach. For
instance, here we do not have multivectors of order 3 and higher and we do not
have the analog of theI operator. But we believe that these difficulties could be
overcomed.
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